
Lecture2. Introduction to Group
Theory

1 Basic de�nitions

A group G is a set of distinct elements, for which a law of composition (such as addition,

multiplication, matrix multiplication, etc.) is well de�ned, and which satis�es the following

criteria:

1. if G1 and G2 are the elements of G, then their composition G3 = G1 � G2 is also an

element of G

2. the composition law is associative: (G1 �G2) �G3 = G1 � (G2 �G3)

3. there exists an identity element E such that E �G = G � E = G for each element G

4. for each element G from G, there exists a unique inverse element G�1, such that
G�1 �G = G �G�1 = E.

The number of group elements is called the order of the group.

A group containing a �nite number of elements is called a �nite group.

A group containing an in�nite number of elements is called an in�nite group.

An in�nite group can be discrete or continuous.

If the number of group elements is denumerably in�nite, the group is called discrete.

If the number of group elements is non-denumerably in�nite, the group is called contin-

uous.

In general, the product G1�G2 does not have to equalG2 �G1. However, ifG1�G2 = G2�G1,

the group is called abelian.

Examples.

1. The single point set is a group of order 1.

2. Two elements 1 and �1 form a group of order 2. The law of composition is multipli-
cation.

3. The set of all real integers form an in�nite discrete group with addition as a law of
composition.
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4. All non-singular n� n matrices form a group with multiplication as a law of composi-

tion.

5. All possible permutations of n identical objects form a discrete group of order n! (the

symmetric group).

The groups of particular interest to physicists are the groups of transformations of a

physical system. A transformation which leaves the physical system invariant is called a

symmetry transformation of the system.

Examples.

1. Inversion in space is a group I consisting of two elements: E (the identity) and I (the

inversion operator).

2. All rotations through an angle 2�=n, where n is an integer, around a �xed axis form a

discrete group (the point symmetry group Cn).

3. All rotations around a �xed axis through an arbitrary angle form a continuous group
(the special rotational group in two dimensions SO(2)).

4. All rotations in a 3-dimensional space around an arbitrary axis through an arbitrary
angle form a continuous group (the special rotational group SO(3)).

5. All rotations and translations in a 3-dimensional space form a continuous group (Eu-

clidean group E3).

The set of elements H is said to be a subgroup of G if H is itself a group under the same
law of composition as that of G and if all elements of H are also elements of G.

Examples

1. For any integer n, Cn is a subgroup of the group SO(2).

2. SO(2) is a subgroup of the group SO(3).

An element B of the group G is said to be conjugate to element A if we can �nd an

element U in G such that UAU�1 = B.

The set of elements which are conjugate to one another is called a class.

Example

All rotations through the same angle around axes arbitrary oriented in the space form a

class of the group SO(3).
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The groups G and H are isomorphic if they are of the same order and there exists a

one-to-one correspondence between the elements of these groups: G1 $ H1, G2 $ H2,

G3 $ H3, : : :. This means that the multiplication tables of these two groups are identical.

Example

The group f1; i;�1;�ig and the group of rotations around the 4-th order axis C4 with the

elements fE;C4; C
2
4 ; C

3
4g are isomorphic:

f1$ E; i$ C4; �1$ C2

4 ; �i$ C3

4g

.

The direct product of the groups H of the order l (H1; H2; : : : ; Hl)and K of the order m

(K1; K2; : : : ; Km) is de�ned as a group G of the order n = lm consisting of the elements

obtained by taking the products of each element of H with every element of K.

Example

The full orthogonal group O(3) is a direct product of the group of 3-dimensional rotations

and the group of inversion I: O(3)=SO(3) � I.

2 Point symmetry groups

The transformations which preserve the distances between the points and bring the body into

coincidence with itself are called symmetry transformations. All symmetry transformations

form a symmetry group of the body. The symmetry groups of �nite bodies which leave at

least one point of the body �xed are called point symmetry groups.
All point symmetry groups consist of three fundamental operations:

� rotations through an angle 2�=n (n is integer) around a certain axis: Cn;

� re
ection in a symmetry plane: �;

� combined rotation through an angle 2�=n (n is integer) around a certain axis and

re
ection in the perpendicular plane: Sn = Cn�h

Remark

One particular important case of a latter transformation is an inversion:

I � S2 = C2�h = �hC2 :

The main point-symmetry groups are brie
y described below.

1. Groups having a single n-fold rotation axis: Cn.

Such a group consists of n elements: E;Cn; C
2
n
; : : : ; Cn�1

n
. It is a cyclic group.
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2. Groups having a single n-fold rotation-re
ection axis: S2n.

Such a group consists of 2n elements (the notation 2n is introduced because the group

is de�ned only for the even order-fold rotation-re
ection axis): E; S2n; S
2
2n; : : : ; S

2n�1
2n .

Remark

One case of particular importance is the group S2, often denoted as I, which contains

two elements: E and I. If S2 is a symmetry group of the Hamiltonian of a physical

system then the parity is conserved.

3. Groups having a single n-fold and a system of 2-fold axes at right angles to it: dihedral

group Dn.

Such a group consists of 2n elements: n elements of the group Cn and n rotations

around the C2 axes.

Remark

D2 is a symmetry group of the rotational Hamiltonian of an even-A nucleus:

Hrot =
3X

k=1

�h2

2Ik
J2
k
; (1)

where Ik are the nuclear principle moments of inertia and Jk are the projections of the

angular momentum operator on the principle axes.

4. Adjunction of the re
ections in a horizontal plane to the group Cn gives rise to the

group Cnh.

This group contains 2n elements: n elements of the group Cn, a re
ection �h and n�1
rotation-re
ections Cn�h, C

2
n
�h, : : :, C

n�1
n

�h.

5. Adjunction of the re
ections in the n vertical planes to the group Cn gives rise to the

group Cnv.

This group contains 2n elements: n elements of the group Cn and n re
ections in the
vertical planes.

6. Adjunction of the re
ections in a horizontal plane to the group Dn gives rise to the

group Dnh. The horizontal plane automatically gives rise to n vertical planes.

This group contains 4n elements: 2n elements of the group Dn, n re
ections in the
vertical planes and n rotation-re
ections.

7. The symmetry group of a regular tetrahedron is known as a tetrahedral group T.

The group contains 12 elements: E, rotations C2 around three 2-fold axes, rotations

C3 and C2
3 around four 3-fold axes.

8. Adjunction of the symmetry center to the group T gives rise to a group Th=T� I.

The group contains 24 elements.
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9. The group containing only rotations around symmetry axes of a cube is known as an

octahedral group O.

The group contains 24 elements: E, rotations C2 around six 2-fold axes, rotations C3

and C2
3 around four 3-fold axes, rotations C4, C

2
4 and C3

4 around three 4-fold axes.

10. Adjunction of the symmetry center to the group O gives rise to a group Oh=O� I.

The group contains 48 elements. This is the full symmetry group of a cube.

11. The symmetry group of a regular icosahedron or regular dodecahedron is known as an
icosahedral group Y.

The group contains 60 elements: E, rotations around �fteen 2-fold axes, around ten

3-fold axes and around six 5-fold axes.

12. Adjunction of the symmetry center to the group Y gives rise to a group Yh=Y� I.

The group contains 120 elements.

Remark

The groups Y and Yh cannot be crystalographic symmetry groups, however, they are
realized as symmetry groups of molecules, e.g. H12B12, or atomic clusters, e.g. fullerene

C60.

3 Symmetric group

All permutations of n identical objects 
1 2 3 : : : n

p1 p2 p3 : : : pn

!
(2)

form a group called a symmetric group of degree n, denoted as Sn.

The group contains n! elements.

Example

Group S3 contains 6 elements:

E =

 
1 2 3

1 2 3

!
; �1 =

 
1 2 3

3 1 2

!
; �2 =

 
1 2 3

2 3 1

!
;

P12 =

 
1 2 3

2 1 3

!
; P23 =

 
1 2 3

1 3 2

!
; P13 =

 
1 2 3

3 2 1

!
:

(3)

Remark

The symmetric group Sn is of primary importance in quantum mechanics. For any system
of n identical particles, the group Sn is a symmetry group of the Hamiltonian. Thus, the

classi�cation of atomic and nuclear states depends essentially on the properties of the group

Sn.
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4 Continuous matrix groups

In this section we shall consider the continuous groups whose elements can be labelled by a

�nite set of continuously varying parameters.

Examples

1. The rotation group in two dimensions SO(2) is characterized by one parameter, the

angle of rotation � (0 � � < 2�).

2. All linear transformations of the type

x0 = ax + b (4)

where �1 < a; b < +1, form a continuous two-parameter group.

The continuous group is called compact if its parameters are restricted in a certain range

(e.g., in example 1 above, the angle � of SO(2) group takes values from a limited domain

0 � � < 2�).
The continuous group is called non-compact if the range of variation of parameters is not

speci�ed (e.g., the parameters a and b from (4) can be varied without restrictions between
�1 and +1).

Remark

If a symmetry group1 of the Hamiltonian is a compact group, then its spectrum is discrete
and of �nite dimensions, that correspond to a bound spectrum.

The description of a continuous spectrum (e.g. scattering states) requires that a symme-
try group of the Hamiltonian be a non-compact group.2

4.1 Matrix properties

The inverse, transpose, complex conjugate and Hermitian conjugate of a matrix A are de-

noted by A�1, At, A�, Ay � (At)�, respectively.

Matrix relation Name of matrices

A = At Symmetric

A = �At Skew symmetric

AtA = E Orthogonal

A = A� Real

A = �A� Imaginary

A = Ay Hermitian

A = �Ay Skew Hermitian

AAy = E Unitary
The matrix A is called regular if its determinant is non-zero.

Some of continuous matrix groups frequently used in physics are listed below.

1It should be a dynamical symmetry group, as will be introduced in the forthcoming lectures.
2It is important to note that the Coulomb problem is peculiar in having an in�nite number of bound

states, so that its dynamical group is non-compact.
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4.2 General linear group

4.2.1 GL(2)

The linear group in two dimensions GL(2) is a group of all linear transformations of two

coordinates (x; y),
x0 = a11x + a12y

y0 = a21x + a22y
(5)

where the parameters a11, a12, a21 and a22, as well as the coordinates x and y can be complex

and for which the determinant ����� a11 a12
a21 a22

����� 6= 0 : (6)

It is easy to check that all four group criteria are satis�ed.

The transformation (5) can be re-written in a matrix form: 
x0

y0

!
=

 
a11 a12
a21 a22

! 
x

y

!
(7)

Thus, we can give an equivalent de�nition: GL(2) is a group formed by all regular complex

(2� 2) matrices.
The group is characterized by eight real parameters (or four complex parameters a11, a12,

a21, a22).

4.2.2 GL(n)

All regular complex (n� n) matrices form the general linear group GL(n), which is charac-

terized by 2n2 real parameters.
The group GL(n) is a non-compact group.

4.3 Unitary groups

4.3.1 U(2)

Let us require that the linear transformations in two dimensions

x0 = a11x + a12y

y0 = a21x + a22y
(8)

with ����� a11 a12
a21 a22

����� 6= 0 (9)

satisfy the additional condition:

jx0j2 + jy0j2 = jxj2 + jyj2: (10)

From (10) we can get that the parameters aij should obey the following relations:

ja11j2 + ja21j2 = 1 ;
ja12j2 + ja22j2 = 1 ;

a11a
�

12 + a21a
�

22 = 0 :
(11)
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All such transformations form a unitary group in two dimensions U(2).

An equivalent de�nition: U(2) is a group formed by all regular unitary (2� 2) matrices.

The group is characterized by four real parameters.

4.3.2 U(n)

All unitary (n� n) matrices form the n2-parameter unitary group U(n).

The group U(n) is a subgroup of the group GL(n).

The group U(n) is a compact group since jaijj2 � 1.

4.3.3 SU(n)

All unitary (n�n) matrices whose determinants are equal to +1 form the (n2�1)-parameter

special unitary group SU(n).

The group SU(n) is a subgroup of the group U(n).

Remark

Besides the rotation group in three dimensions, the unitary groups are among the most

frequently used groups in nuclear physics. Some examples are given below.

1. From charge-independence of nuclear forces it follows that the nuclear Hamiltonian is

invariant under the transformations of the SU(2) group in a charge space (the isospin

symmetry).

2. If the SU(3)-symmetry is imposed on the e�ective two-body shell-model interaction,

then the nuclear spectrum will have a rotational structure.

3. From the assumption that nuclear forces are invariant under rotations in spin as well

as isospin spaces it follows that the nuclear Hamiltonian has SU(4) symmetry and its

energy levels form SU(4)-supermultiplets (Wigner's spin-isospin symmetry).

4.4 Orthogonal groups3

4.4.1 O(2)

Let us consider the linear transformations in two dimensions which preserve the distance

between two points, i.e.
x0 = a11x + a12y

y0 = a21x + a22y
(12)

where a11, a12, a21 and a22, as well as x and y take only real values,����� a11 a12
a21 a22

����� 6= 0 (13)

and

x02 + y02 = x2 + y2: (14)

3Only real orthogonal groups are mentioned here
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From(14) we can get that the parameters of such transformations should satisfy the

following three relations:
a211 + a221 = 1 ;

a212 + a222 = 1 ;

a11a12 + a21a22 = 0 :
(15)

All such transformations form an orthogonal group in two dimensions O(2).

An equivalent de�nition: O(2) is a group formed by all real orthogonal (2� 2) matrices.

4.4.2 O(n)

All real orthogonal (n � n) matrices form the n(n � 1)=2-parameter real orthogonal group
O(n).

The group O(n) is a subgroup of the group GL(n).

4.4.3 SO(n)

All real orthogonal (n � n) matrices whose determinants are equal to +1 form the special

orthogonal group SO(n).

The group SO(n) is a subgroup of the group O(n).

Examples

1. The rotation group in two dimensions SO(2) has one parameter. It can be represented

by the matrices  
cos � sin�
� sin� cos�

!
; (16)

where 0 � � < 2�.

This means that under rotation around the axis perpendicular to the xy-plane, the

coordinates (x; y) are transformed as

x0 = cos�x+ sin�y ;

y0 = � sin�x+ cos �y
(17)

with 0 � � < 2�.

2. The rotation group in three dimensions SO(3) is a three parameter group. The most

general rotation can be uniquely de�ned by three parameters, e.g. by three Euler

angles (�, �, 
):

0
B@

cos� cos � cos 
 � sin� sin 
 � cos� cos � sin 
 � sin� cos 
 cos� sin�

sin� cos � cos 
 + cos� sin 
 � sin� cos � sin 
 + cos� cos 
 sin� sin�
� sin� cos 
 sin � sin 
 cos �

1
CA : (18)
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4.4.4 SO(1,1)

Let us consider the linear transformations in two dimensions

x0 = a11x + a12y

y0 = a21x + a22y
(19)

where a11, a12, a21 and a22, as well as x and y take only real values,����� a11 a12
a21 a22

����� = 1 (20)

and which preserve the relation:

x02 � y02 = x2 � y2: (21)

All such transformations form a group in two dimensions SO(1,1).

Example

The transformations of the SO(1,1) group can be written in the form

x0 = 
x� 
�(ct) ;
ct0 = �
�x + 
(ct)

(22)

with � = v=c and 
 = 1=
p
1� �2. The invariant form is now x2 � c2t2.

This is the 1+1 dimensional Lorentz group.

4.4.5 SO(p,q)

All real ((p + q) � (p + q)) matrices whose determinants are equal to +1 and which keep

invariant the quadratic form

x21 + x22 + : : :+ x2
p
� x2

p+1 � : : :� x2
p+q

= inv (23)

comprise a group SO(p,q).

Example

For p = 3 and q = 1, the group SO(3,1) is known as an extended Lorentz group. The
elements of this group keep invariant the following quadratic form:

x2 + y2 + z2 � c2t2 = inv : (24)

4.5 Symplectic groups

Let us consider the linear transformations of two points in a plane (x1; y1) and (x2; y2):

x01 = a11x1 + a12y1
y01 = a21x1 + a22y1

(25)
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and
x02 = a11x2 + a12y2
y02 = a21x2 + a22y2

(26)

and let us require that the following relation holds:

x01y
0

2 � y01x
0

2 = x1y2 � y1x2 : (27)

All such transformations form a group in two dimensions called the symplectic group.

If the parameters a11, a12, a21 and a22 are complex then the group is denoted as Sp(4,C).

If the parameters a11, a12, a21 and a22 are real then the group is denoted as Sp(4,R). If
we require that the transformations of Sp(4,C) be unitary, then we will get the unitary

symplectic group denoted as Sp(4).
This can be generalized for n dimensions. Then the corresponding groups will be

Sp(2n,C), Sp(2n,R) and Sp(2n).

Remark

Symplectic groups often arise in nuclear physics. Some examples are given below.

1. Classi�cation of the many-particle nuclear states in jj-coupling scheme requires the

introduction of Sp(2j+1) group.

2. Taking into account the particle-hole excitations in the interacting boson model leads

to the Sp(2n) symmetries of the Hamiltonian.
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