
Lecture 5. Application of Group Theory

to Quantum Mechanics. Part II

1 Matrix elements of operators

1.1 Irreducible operators

Let us consider a group G of transformations in the space, i.e. for each element G:

~r
G! ~r 0 = G~r : (1)

These transformations induce the corresponding transformations in the space of wave func-

tions, which we denote by the operator D̂(G):

 (~r)
G!  0(~r) = D̂(G) (~r) =  (G�1~r) : (2)

If T̂ is an operator in the space of functions, then under transformation of the coordinates

G, this operator will also be transformed as

T̂
G! T̂ 0 = D̂(G)T̂ D̂�1(G) : (3)

Let us suppose that there exists a set of operators T̂
(�)
i such that each transformed

operator will be a superposition of the operators of the set,

T̂
(�)
i

G! T̂
0(�)
i = D̂(G)T̂

(�)
i D̂�1(G) =

X
j

D
(�)
ji (G)T̂

(�)
j ; (4)

where D
(�)
ji (G) are the matrix elements of the irreducible representation D(�)(G). Then the

set of operators T̂
(�)
i is called an irreducible set of operators. The operators T̂

(�)
i satisfying

(4) are said to transform according to the irreducible representation D(�)(G) of the groupG.

The number of the operators T̂
(�)
i is equal to the dimension of the irreducible representation

D(�)(G).

In general, if an operator T̂ is not irreducible, then it can be represented as a superposition

of irreducible operators:

T̂ =
X
�

T̂ (�) : (5)

Example 1

Find the transformation properties of the electric dipole operator with respect to the group

C3v.

1. The electric dipole operator
~d = e~r (6)

is a vector and therefore is represented by three components, or by a set of three operators:

(dx; dy; dz). The operators dx = ex, dy = ey, dz = ez transform as operators x, y and z,

respectively. It is known that x, y are the basis functions of the irreducible representation

E, while z is the basis function of the irreducible representation A1 of the group C3v (see
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Example 2 of Section 1.4 of lecture 3). This means that two operators (dx; dy) form an

irreducible set and they transform according to the 2-dimensional irreducible representation

E, while dz is also an irreducible operator and it transforms according to the 1-dimensional

irreducible representation A1 of C3v:

dz ! T̂ (A1)

dx; dy ! T̂
(E)
1 ; T̂

(E)
2 :

(7)

Example 2

Find the character of the electric dipole operator with respect to the group SO(2).

Let us consider how the vectors ~ex, ~ey and ~ez transform under operations of the group

SO(2). If the axis of rotation coincides with axis z, then

D̂(a)~ex = cos a~ex + sin a~ey
D̂(a)~ey = � sin a~ex + cos a~ey
D̂(a)~ez = ~ez

(8)

or for the linear combinations of ~ex and ~ey we have

D̂(a)(~ex + i~ey) = exp (�ia)(~ex + i~ey)

D̂(a)(~ex � i~ey) = exp (ia)(~ex � i~ey)

D̂(a)~ez = ~ez

(9)

The operator D̂(a) is a rotation operator

D̂(a) = exp (�a @
@�

) : (10)

The representations of the group SO(2) can be labelled by the integer m:

Dm(a) = exp (�ima) : (11)

Therefore, vector ~ez is the basis vector of the irreducible representation D0, while vectors

(~ex � i~ey) are the basis vectors of the irreducible representations D
�1.

This means that operators dx + idy, dx � idy and dz are irreducible operators and they

transform according to the irreducible representations D1, D�1 and D0, respectively, of the

group SO(2):

dx + idy ! T̂ 1

dx � idy ! T̂�1

dz ! T̂ 0 :

(12)

Example 3

Find the character of the electric dipole operator with respect to the group SO(3).

Let us de�ne the operators

Ylm(~r) = rlYlm(�; �) : (13)
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Under rotations, the spherical functions transform as

Ylm(~r)! D̂(�; �; 
)Ylm(�; �) =
X
m0

D
(l)
m0m(�; �; 
)Ylm0(�; �) ; (14)

i.e. they form a basis of the irreducible representations of the group SO(3). The transfor-

mation properties of the operators (13) are similar:

Ylm(~r)! D̂(�; �; 
)Ylm(~r)D̂�1(�; �; 
) =
X
m0

D
(l)
m0m(�; �; 
)Ylm0(~r) : (15)

This means that operators Ylm(~r) for each l form an irreducible set of operators and they

transform according to the irreducible representation D(l) of the group SO(3), or in other

words, they are tensors of rank l:

Ylm(~r)! T̂ (l) : (16)

Since
Y10(~r) =

q
3
4�
z

Y11(~r) =
q

3
8�
(x+ iy)

Y1�1(~r) =
q

3
8�
(x� iy)

(17)

three spherical components of the radius-vector x+ iy, x� iy and z form an irreducible set

with respect to the group SO(3) and they transform according to the irreducible represen-

tation D(1) of this group. Thus, the radius-vector ~r transforms according to the irreducible

representation D(1) of SO(3). Since ~d = e~r, the electric dipole operator also transforms

according to the irreducible representation D(1) of this group:

~d! T̂ (1) : (18)

1.2 Calculation of matrix elements of operators

In order to calculate transition probabilities WIF , we need to calculate the matrix elements

of the operator, responsible for this transition between the states of interest, since

WIF � jh F jT̂ j Iij2 : (19)

ALGORITHM

1. Find the symmetry character of initial and �nal states, e.g.  I =  
(�)
i and  F =  

(
)
k .

2. Find the tensor character of the transition operator, e.g. T̂ = T̂ (�) or decompose it

into irreducible components according to (5) if necessary.

3. Calculate the matrix elements of the type

h (
)
k jT̂ (�)

j j (�)
i i : (20)

For the matrix elements of the irreducible operators the Wigner-Eckart theorem holds:

h (
)
k jT̂ (�)

j j (�)
i i =

X
t

(�i�jj
kt)h (
)jjT̂ (�)jj (�)it ; (21)

where (�i�jj
kt) are the Clebsch-Gordan coe�cients of the group G and h (
)jjT̂ (�)jj (�)it
is called a reduced matrix element.
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CONSEQUENCES OF THE WIGNER-ECKART THEOREM

1. The Wigner-Eckart theorem gives a simple receipt to calculate all matrix elements

of the type (20). To do this, we should �rst calculate one matrix element (20) for

particular values i, j and k. The Clebsch-Gordan coe�cients for any groups are usually

tabulated. So, we can �nd a value of the reduced matrix element h (
)jjT̂ (�)jj (�)it.
Then using the tabulated Clebsch-Gordan coe�cients, it is simple to compute all the

rest matrix elements (20).

2. Often in the calculation of reaction cross-sections or transition probabilities, it is re-

quired to know not matrix elements themselves, but the sum of matrix elements on the

i or j. Such problems appear in the calculation of reaction cross-sections if the beam

and the target are not polarized and the detector is not sensible to the polarization of

the incoming particles. The Wigner-Eckart theorem allows to perform the summations

automatically.

Example

If the nuclear Hamiltonian is invariant with respect to SO(3) group, then the states can

be characterized by a value of the total angular momentum J and they are (2J+1)-fold

degenerate. If operator T̂ (LM) describes a transition from an initial state j�i; JiMii
to a �nal state j�f ; JfMf i, then the reduced transition probability for a given (Ji;Mi)

should be averaged over all projections Mi and summed over all values Mf of the �nal

state and all values M of the transition operator:

B(L; Ji ! Jf) =
1

2Ji + 1

X
Mi;M;Mf

jh�f ; JfMf jT̂ (LM)j�i; JiMiij2 : (22)

The reduced matrix element of the SO(3) group is de�ned with an additional square

root in front of it (by some historical reasons), i.e.

h�f ; JfMf jT̂ (LM)j�i; JiMii =
(JiMiJM jJfMf )q

2Jf + 1
h�f ; Jf jjT̂ (LM)jj�i; Jii : (23)

Applying the Wigner-Eckart theorem and using the formulae (21) and (22) for the

SO(3) Clebsch-Gordan coe�cients from the �rst lecture, we get

B(L; Ji ! Jf) =
1

2Ji + 1

X
M;Mf

(JiMiJM jJfMf )
2

2Jf + 1
jh�f ; Jf jjT̂ (L)jj�i; Jiij2 =

1

2Ji + 1
jh�f ; Jf jjT̂ (L)jj�i; Jiij2 :

(24)

3. Selection rules

The matrix element (20) will be zero unless D(
)(G) is contained in the decomposition

of D(���):
D(���)(G) =

X



m
D
(
)(G) (25)

This means that if T̂ (�) is a transition operator, then from a state  (�), transitions only

to those states  (
) are allowed for which (25) holds.
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Example 1

Find the selection rules for electric dipole transitions for a system of C3v symmetry.

The states of the system can be associated with the irreducible representations of the

group C3v: A1, A2, E. From Example 1 of section 1.1 we know that the components

of the electric dipole operator
~d = e~r (26)

has the following transformation properties: operators dx and dy transform according

to the irreducible representation E, while dz transforms according to the irreducible

representation A1 of C3v.

From the table

A1 � A1 A1

A2 � A1 A2

E � A1 E

A1 � E E

A2 � E E

E � E A1 � A2 � E

we �nd the selection rules. The operator of the radiation linear polarized along z axis is

dz, transforming as A1. It can connect only the states which have the same symmetry.

So, allowed transitions are

dz : A1 $ A1 ; A2 $ A2 ; E $ E : (27)

The operator of the radiation polarized in the xy-plane is characterized by dx; dy,

transforming as E. The allowed transitions are

(dx; dy) : A1 $ E ; A2 $ E ; E $ E : (28)

Example 2

Find the selection rules for electric dipole transitions for an axially symmetric system.

The states of the system can be associated with the irreducible representations of the

group SO(2) and thus can be labelled by an integer of half-integer m. From Example

2 of section 1.1 we know that the components of the electric dipole operator

~d = e~r (29)

has the following transformation properties: operators (dx + idy), (dx � idy) and dz
transform according to the irreducible representation D1, D�1 and D0 of SO(2), re-

spectively. For SO(2) the Clebsch-Gordan series (25) looks like follows

Dm1 �Dm2 = Dm1+m2 : (30)
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Thus the transitions of linear polarized radiation (dz) are allowed between the states

with �m = 0, while the radiation polarized in the xy-plane (dx � idy) can be emitted

or absorbed only between the states with �m = �1.
Example 3

Find the selection rules for the electric and magnetic multipole transitions in a spher-

ically symmetric system.

The electric and magnetic transition operators have a form:

T̂ (E ;LM) = 1
c

q
L

L+1

(2L+1)!!

qL

R
~j(~r) � ~AELM(q~r)d~r

T̂ (M;LM) = � i
c

q
L

L+1

(2L+1)!!

qL

R
~j(~r) � ~AMLM(q~r)d~r

(31)

where q = !=c = 2�=�, and

~AELM(q~r) = 1

q
p

L(L+1)

~r� ~LjL(qr)YLM(~r)

~AMLM(q~r) =
~Lp

L(L+1)
jL(qr)YLM(~r) :

(32)

From here it is seen that the operators T̂ (E ;LM) and T̂ (M;LM) transform according

to the irreducible representations D(L) of the group SO(3).

From the Clebsch-Gordan series for the SO(3) group

D(Ji�L)(G) =
Ji+LX

Jf=jJi�Lj
D(Jf )(G) (33)

it follows that the transitions from the level Ji will go only to the levels with Jf =

jJi � Lj; : : : ; Ji + L.

Suppose that the system is also invariant with respect to inversion I (the group of in-

version consists of two elements: identity E and a space inversion I, which corresponds

to the transformation x! �x; y ! �y; z ! �z).
The group I has two 1-dimesional irreducible representations,

E I

D(1) 1 1

D(2) 1 �1

If the Hamiltonian of the system is invariant with respect to inversion, then its eigen-

states will belong to either the irreducible representation D(1) or to the irreducible

representation D(2). In other words, they will be characterized by a certain parity, +1

or �1 for

P̂ (~r) = + (~r) or P̂ (~r) = � (~r) ; (34)

respectively, where P̂ is a parity operator:

P̂ (~r) =  (�~r) : (35)
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From the table

D(1) �D(1) D(1)

D(2) �D(1) D(2)

D(2) �D(2) D(1)

the selection rules for a matrix element follows:

h f jT̂ j ii = 0 if PiPTPf = �1 : (36)

From equations (31){(32) follows that T̂ (E ;LM) possesses parity (�1)L and T̂ (M;LM)

possesses parity (�1)L+1. Thus, the selection rules with respect to the group I are

PiPf = (�1)L for electric 2L pole transitions

PiPf = (�1)L+1 for magnetic 2L pole transitions :
(37)

4. Equivalent operator method

If operators T̂ (�) and Ŝ(�) has the same transformation properties with respect to the

group G, then their matrix elements are proportional:

h (
)
k jT̂ (�)

j j (�)
i i

h (
)
k jŜ(�)

j j (�)
i i

=
h (
)jjT̂ (�)jj (�)i
h (
)jjŜ(�)jj (�)i

� A��
 ; (38)

where A��
 is just a constant depending on �, � and 
.

The advantage of the formula (38) is the following. Sometimes it is di�cult or even

impossible to calculate the matrix elements of an operator T̂ (�), but it is simple to

calculate the matrix elements of an equivalent operator Ŝ(�). Then, the matrix elements

of interest are

h (
)
k jT̂ (�)

j j (�)
i i = A��
h (
)

k jŜ(�)
j j (�)

i i : (39)

Example

Calculate the spin-orbit splitting in a many-electron atom.

The Hamiltonian of a many-electron atom can be presented as

H =
X
i

 
� �h2

2m
�i

!
�
X
i

Ze2

ri
+
X
i<j

e2

rij
+
X
i

f(ri)(~li � ~si) ; (40)

where the �rst term is a kinetic energy of electrons, the second term is the Coulomb

attraction between the nucleus and each electron, the third term is a Coulomb repulsion

between the electrons and the last term is the spin-orbit interaction. The nucleus is

assumed to be �xed. This Hamiltonian can be represented in a form

H = H0 +H1 +H2 ; (41)
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where

H0 =
X
i

 
� �h2

2m
�i �

Ze2

ri
+ U(ri)

!

H1 =
X
i<j

e2

rij
�
X
i

U(ri)

H2 =
X
i

f(ri)(~li � ~si) :

(42)

Here we added U(ri) term to the Coulomb repulsion between the electrons, because

the summed repulsion between the electrons is similar to the e�ective repulsion of an

electron from a center. With such a de�nition, H1 is rather small. Usually H0 �
H1 � H2.

The eigenfunctions of the Hamiltonian H0 is just a linear combination of the direct

products of single-electron eigenfunctions

Y
 i ; (43)

where  i is a product of radial, angular and spin wave functions:

 i = unl(ri)Ylml
(�i; �i)�

(1=2)
ms

: (44)

Taking into account the Hamiltonian H1 will bring to the LS-coupling between the

orbital angular momenta and spins of individual electrons. The eigenfunctions of H0+

H1 can be characterized by the value of the total orbital angular momentum L, total

spin S, and their projections:

j�LMLSMSi ; (45)

where ~L =
P

i
~li, ~S =

P
i ~si, while � denotes all other quantum numbers. The states

(45) will be (2L+ 1)(2S + 1)-fold degenerate.

Taking into account the Hamiltonian H2 will bring to the spin-orbit splitting of the

(2L+1)(2S+1)-fold degenerate multiplets of levels. The �nal wave function of a many-

electron atom can be characterized by the value of the total orbital angular momentum

L, total spin S, total angular momentum J and its projection M on the quantization

axis:

j�LSJMi =
X

ML;MS

(LMLSMSjJM)j�LMLSMSi : (46)

The value of the spin-orbit splitting is given by a matrix element

�J = h�LSJM j
ZX
i=1

(~li � ~si)j�LSJMi : (47)

In order to calculate the matrix elements (47), we will make use of the Wigner-Eckart

theorem. The operator
PZ

i=1(
~li � ~si) has the same transformation properties as the

operator (~L � ~S) under groups SOL(3) and SOS(3), i.e. these operators are equivalent.

This means that

�J = h�LSJM jPZ
i=1(

~li � ~si)j�LSJMi = A�LSh�LSJM j(~L � ~S)j�LSJMi
= 1

2
A�LS [J(J + 1)� L(L + 1)� S(S + 1)] ;

(48)
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where the coe�cients A�LS are just the ratios of the corresponding reduced matrix

elements and they depend only on �, L and S. The di�erence

�J ��J�1 = JA�LS (49)

is known as Lande formula.

2 Some useful formulae for SO(3) tensorial operators

The irreducible operators with respect to SO(3) group are called tensors of rank k if they

transform according to the irreducible representation D(k):

D̂(�; �; 
)T̂ (k)
p =

X
q

D(k)
qp (�; �; 
)T̂

(k)
q (�; �) : (50)

Examples

The tensor of rank 0 contains one component T
(0)
0 which does not change under rotations.

It is usually either a scalar, or a pseudoscalar depending on its transformation properties

under inversion (the scalar does not change its sign under inversion, while the pseudoscalar

changes its sign under inversion).

The tensor of rank 1 contains three components T
(1)
0 , T

(1)
1 and T

(1)
�1 . Three cartesian

coordinates of any vector ~a = fax; ay; azg can be re-written in suitable form as

T
(1)
1 = � 1p

2
(ax + iay)

T
(1)
�1 = 1p

2
(ax � iay)

T
(1)
0 = az :

(51)

The tensor of rank 2 has �ve components T
(2)
0 , T

(2)
�1 , T

(2)
�2 . They can be expressed in

terms of the �ve components of the symmetric trace-less 2nd rank tensor de�ned in cartesian

coordinates, e.g.

Tik = xik �
1

3
r2�ik ; i; k = x; y; z ; (52)

and SpTik = 0. The corresponding relations are:

T
(2)
0 = 3T33

T
(2)
�1 = �

p
6(T13 � iT23)

T
(2)
�2 =

p
6(T11 +

1
2
T33 � iT12) :

(53)

In particular, the tensors of the rank 2 are related to spherical harmonics:

T (2)
q =

s
16�

5
Y2q(~r) : (54)

For example, the quadrupole moment of the atom with Z electrons is usually de�ned as

a symmetric 2nd rank tensor

Qik =
ZX

�=1

e�
�
3xi�xk� � �ikr

2
�

�
: (55)
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In general, the operators (13) are examples of tensorial operators of rank l.

The tensor product of two irreducible operators U (k1) and V (k2) can be de�ned as

[U (k1) � V (k2)](k)q =
X
q1;q2

(k1q1k2q2jkq)U (k1)
q1

V (k2)
q2

: (56)

The scalar product of two irreducible operators U (k) and V (k) can be de�ned as

(U (k) � V (k)) � (�1)k
p
2k + 1[U (k) � V (k)]

(0)
0 =

X
q

(�1)qU (k)
q V

(k)
�q : (57)

The following formulae are useful for the calculations of matrix elements of di�erent

operators in quantum mechanics (of interaction or of transition operators).

1. If operators U (k1) and V (k2) act of the same coordinates of a system, then

h�jjj[U (k1) � V (k2)](k)jj�0j 0i =
p
2k + 1(�1)j+j0+k�X

�00;j00

h�jjjU (k1)jj�00j 00ih�00j 00jjV (k2)jj�0j 0i
(
k1 k2 k

j 0 j j 00

)
:

(58)

Here � refers to the other quantum numbers.

2. For a scalar product we have

h�jjj(U (k) � V (k))jj�0j 0i = �jj0p
2j + 1

X
�00;j00

(�1)j+j00h�jjjU (k)jj�00j 00ih�00j 00jjV (k)jj�0j 0i :

(59)

3. If operators U (k1) acts on the coordinates of the functions related to the angular mo-

mentum j1 and V (k2) acts on the coordinates of the functions related to the angular

momentum j2, then

h�j1j2; jjj[U (k1) � V (k2)](k)jj�0j 01j 02; j 0i =
X
�00

8><
>:
j1 j2 j

j 01 j 02 j 0

k1 k2 k

9>=
>;�q

(2j + 1)(2j 0 + 1)(2k + 1)h�j1jjU (k1)jj�00j 01ih�00j2jjV (k2)jj�0j 02i

(60)

(the sum over �00 is included in case both operators acts on the same quantum number

�).

4. For the scalar product of two operators U (k) and V (k) acting on the coordinates of the

functions related to the angular momenta j1 and j2, respectively, we have

h�j1j2; jmj(U (k) � V (k))j�0j 01j 02; j 0m0i = �jj0�mm0(�1)j2+j0

1
+2k+j

(
j1 j2 j

j 02 j 01 k

)
�X

�00

�h�j1jjU (k)jj�00j 01ih�00j2jjV (k)jj�0j 02i :
(61)
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3 Conservation laws

The observable T is said to conserve if its mean value does not change in time in any state

 (~r; t).
d
dt
h jT̂ j i = h d

dt
 jT̂ j i+ h jT̂ j d

dt
 i

= 1

i�hf�hĤ jT̂ j i+ h jT̂ jĤ ig
= 1

i�hh j[T̂ ; Ĥ]j i = 0 :

(62)

This means that the observable T conserves if the operator T̂ commutes with the Hamilto-

nian.

If the system possesses a certain symmetry, i.e. the Hamiltonian is invariant with respect

to a group G, then for all elements G, the transformation operators D(G) commute with

the Hamiltonian. At �rst glance, this suggests an existence of a huge number of conserved

quantities. However, not all of them are independent. For example, the conservation of

D(G3) relates to the conservation of D(G1) and D(G2) if G1 � G2 = G3. So, if the group

G is of order n and m � n elements of the group generate the rest of n elements, then the

system will have only m conserved values, or integrals of motion.

Example

All elements of the group C3 can be generated from one element C3, since C3 � C3 = C2
3 ,

C3 �C2
3 = E. Thus, the invariance of a system with respect to the group C3 will give rise to

one conserving quantity.
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